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I. NUCLEAR SHELL MODEL

A. Single particle orbit

In the single particle shell model, the nucleons in to nucleus are assumed to move in a

common potential V (r) similar with atomic electrons, where

V (r) =
ze2

r

One might then expect to find a shell structure in nuclei, most of the nucleons are paired

so that a pair of nucleons contribute zero spin and magnetic moment. The pair of nucleons

thus from an inertcore, and therefor the spin and magnetic moment of even-even nuclei is

zero, in case of odd-nuclei the properties of the nucleus is characterized by unpaired proton

or neutron. To determine how the nucleons fill the various quantum states, we should specify

the mean potential to which each nucleon is subjected.

As a starting point, we may confine ourselves to spherical nuclei and remark that the

average force on a nucleon of the center to zero. In a central potential, the orbital angular

momentum of each nucleon is a constant of motion, each quantum number l there is a series

of energy of levels which we shall distinguish by the quantum number n associated with

number of nodes of the radial wave function. The space of the energy levels depends on the

form of the potential. The extreme case for which calculations can be mode are

The Harmonic oscillator Vho = −V0 + 1
2
mw2r2

The uniform Square well Vsq = −V0, r < R Vsq = ∞, r > R

The Woods-Saxon potential Vws(r) = −V0/(1 + e[(r−R)/a]) (drawn here for R = 10a).

The nuclear potential is expected to be in between the first two extremes and we desire

to arrive at the correct single particle quantum states by interpolating between the two.

B. Harmonic Oscillator Potential Well

V (r) = 1
2
mw2r2 ψnlm(~r) = Unl(r)Ylm(Θ, Φ) = Rnl(r)

r
Ylm(Θ, Φ)

H = − h̄2

2m
∇2 + V (r)

The energy eigenvalue corresponding to the eigenfunction
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FIG. 1: Radial dependence of different mean potenials.

Enl = h̄ω0(2n + l − 1

2
) = h̄ω0(N +

3

2
) = En −−−−−−−−(1)

where N = 2(n− 1) + l represents the total number of oscillator quantum excited.

with

N = 0, 1, 2, ............., n = 1, 2, 3, ................l = 0, 1, 2, ...................

m = −l, ............, l −−−−−−−−(2)

C. Spin-orbit Energy

As shown above the H.O. potential is a reasonable starting point for understanding the

structure of single-particle state in nuclei. However, deviation are found beyond Nmax = 3.
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To correct for this , additional term must introduced.

If the potential that binds a nucleon to central well has a term that depends on the

coupling between s and l ( intrinsic spin and orbital angular momentum), the single particle

energy will be a function of the j of a state as well. Since j = s + l with two possible state

s is parallel to l → j = l + 1
2

s is anti-parallel to l → j = l− 1
2

Let a be the strength of spin-orbit term then

H = − h̄2

2m
∇2 +

1

2
mω2

0r
2 + as.l

The parameter a may depend on the nucleon number A when the spin -orbit term is included

the single particle energy

ENlj = (N +
3

2
)h̄ω0 +

a

2
l ↔ j = l +

1

2

ENlj = (N +
3

2
)h̄ω0 − a

2
(l +

1

2
) ↔ j = l − 1

2

The splitting in the energy between j = l + 1
2

and j = l− 1
2

is related with value of a

For a < 0 the j = l + 1
2

is lowered in energy and the amount of depression increases

with increasing l. j = l + 1
2

state for larger l may be pushed down in energy by a amount

comparable to h̄ω0. The j = l + 1
2

states of the largest l in a shell with N oscillator quanta

may be moved closer to the group of states belonging to the (N− 1) shell below. For

example, because of spin-orbit splitting, we find that j = 9
2

state for l = 4 shell is depressed

sufficiently to closed in energy to the N = 3 group. Specified single paretical states by

their label N, l, j. and corresponding to these quantum number, we use the a single letter

s,p, f ,g,h, i, j for l = 0,1,2,3,4,5, .... as shown in the figure and the examples.
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TABLE I: Classification of nuclear states

N E/h̄ω0 n l | nl > π No.= 2(2l+1) J | nlJ > No.=(2J+1) Total No.

0 3/2 1 0 | 1s > + 2 1/2 | 1s1/2 > 2 2

1 5/2 1 1 | 1p > - 6 3/2 | 1p3/2 > 4 6

1/2 | 1p1/2 > 2 8

2 7/2 1 2 | 1d > + 10 5/2 | 1d5/2 > 6 14

3/2 | 1d3/2 > 4 18

2 0 | 2s > + 2 1/2 | 2s1/2 > 2 20

3 9/2 1 3 | 1f > - 14 7/2 | 1f7/2 > 8 28

5/2 | 1f5/2 > 6 34

2 1 | 2p > - 6 3/2 | 2p3/2 > 4 38

1/2 | 2p1/2 > 2 40

4 . . . . . . . . . .

. . . . . . . . . . .

The configuration of a real nuclide (which of course has both neutrons and protons)

describes the filling of its energy levels (sub-shells), for protons and for neutrons, in order,

with the notation (nlj)k for each sub-shell, where k is the occupancy of the given sub-shell.

Sometimes, for brevity, the completely filled sub-shells are not listed, and if the highest sub-

shell is nearly filled, k can be given as a negative number, indicating how far from being filled

that sub-shell is. Using the ordering diagram above, and remembering that the maximum

occupancy of each sub-shell is 2j + 1, we predict, for example, the configuration for 17
8 O to

be: (1s1/2)
2 (1p3/2)

4( 1p1/2)2 for the protons

and (1s1/2)
2 (1p3/2)

4 (1p1/2)2 (1d5/2)
1 for the neutrons

Notice that all the proton sub-shells are filled, and that all the neutrons are in filled

sub-shells except for the last one, which is in a sub-shell on its own. Most of the ground

state properties of 17
8 O can therefore be found from just stating the neutron configuration

as (1d5/2)
1.
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FIG. 2: Single particle energy Levels.
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The number of states DN (i.e, the maximum number of protons and neutrons a harmonic

oscillator shell can accommodate is given by

DN = 2
∑

allwod(l)

(2l + 1) = 2
N+1∑

k=1

k = (N + 1)(N + 2)−−−−−−−−(3)

the factor 2 is account the two possible orientations of nucleon intrinsic spin. The total

number of states Dmax, up to maximum number of Harmonic oscillator quantum Nmax is

given by a sum overall N -value to Nmax

Dmax =
Nmax∑

N=0

DN =
1

3
(Nmax + 1)(Nmax + 2)(Nmax + 3)−−−−−−−−(4)

for

Nmax >>> 1 Dmax =
1

3
(Nmax + 2)3

Then the values of Dmax = 2, 8, 20, 40, 70, 112,.................................. corresponding to

Nmax = 0, 1, 2, 3, 4, 5, 6, ......

The H. O. frequency ω0 may be related to the size of the nucleon and to the nucleons

number A of the nucleus. The expectation value of r2 in the state Nh̄ω0 can be obtained

from the expectation value of the H.O. potential energy

<
1

2
mω2

0r
2 >N=

1

2
(N +

3

2
)h̄ω0

The factor 1
2

in right hand side comes from the fact that, for particle in a three-dimension

H. O. potential , the average potential energy is half of total energy, the < r2 > in the state

N

< r2 >N=
h̄

mω0

(N +
3

2
)−−−−−−−−(5)

The mean- square radius of nucleus made of A given by

< R2 >=
2

A

Nmax∑

N=0

DN < r2 >N

using eqs. (4) and (5)

< R2 >=
2

A

Nmax∑

N=0

(n + 1)(N + 2)(N +
3

2
)

h̄

mω0

−−−−−−−−(6)

the factor 2 from the fact we must consider proton and assuming that neutron and proton

number are equal for simplicity. Using mathematical identity
n∑

k=1

k2 =
1

6
n(n + 1)(2n + 1)

n∑

k=1

k3 = (
n(n + 1)

2
)2
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The result is

Nmax∑

N

(N + 1)(N + 2)(N +
3

2
) =

1

4
(Nmax + 1)(Nmax + 2)2(Nmax + 3)

for Nmax >>> 1
Nmax∑

N

(N + 1)(N + 2)(N +
3

2
) =

1

4
(Nmax + 2)4

In the limit of large Nmax we obtain the result

< R2 >=
2

A

h̄

mω0

1

4
(Nmax + 2)4

h̄ω0 =
1

A

h̄2

m < R2 >

1

2
(Nmax + 2)4 −−−−−−−−(7)

The number A can be also expressed in terms of Nmax using (4)

A = 2
Nmax∑

N=0

DN =
2

3
(Nmax + 2)3

factor 2 account for H. O. state can take a neutron as well as proton.

(Nmax + 2) =
3

2
A1/3 −−−−−−−−(8)

combining the result of (6) and (8) we obtain

h̄ω0 =
1

A

h̄2

m < r2 >

1

2
(
3

2
A)4/3

h̄ω0 =
h̄2

m3
5
(r0A1/3)2

3

4
(
3

2
A)1/3

h̄ω0 =
5

4
(
3

2
)1/3 h̄2

mr2
0

A−1/3 ≈ 41A−1/3MeV −−−−−−−−(9)

we use < r2 >= 3
5
(r0A

1/3)2 adopted a constant density sphere model and r0 = 1.2 fm.

Problems

Q1 Write down the shell-model configuration of the nucleus 7
3Li and hence find its spin,

parity and magnetic moment (in nuclear magnetons). Give the two most likely configurations

for the first excited state, assuming that only protons are excited.

Q2 A certain odd-parity shell-model state can hold up to a maximum of 16 nucleons;

what are its values of j and l?
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Q3 The ground state of the radioisotope 17
9 F has spin-parity Jπ = 5+

2
and the first

excited state has Jπ = 1−
2

. Suggest two possible configurations for the latter state.

Q4 What are the configurations of the ground states of the nuclei 93
41Nb and 33

16S and what

values are predicted in the single-particle shell model for their spins, parities and magnetic

dipole moments?


